Exploration of Heavy Metal Tolerant Bacteria From Rhizosphere Soil of Tana Toraja's Bamboo

  • Widiastini Arifuddin STKIP Pembangunan Indonesia

Abstract

Tana Toraja has a high diversity of bamboo. Bamboo plants play a significant role in bioenergy programs and environmental management. Some studies had showed bamboo as a phytoremediation agent for heavy soil contaminated soil. Their rizosphere soil also an ideal habitat for potential microorganisms, which has been reported by many studies. In this study we used five bacteria isolates, which isolated from different rhizosphere soil of tana torajas’ bamboo, namely Htl.2, Hpr.6, Hk.1, Hh.5 and Hb.1. We used three different heavy metal, they are mercury (Hg), plumblum (Pb) and chromium (Cr) with a consentration range are 5 ppm and 10 ppm. The ability of isolates bacteria to adapt to heavy metals was indicated by the formation of clear zones on petridisc. Based on the results, all bacterial isolates showed different responses to heavy metal presence in their media culture. Isolates bacteria Htl2, Hpr.6 and Hb.1 form a relatively high clear zone in the heavy metal mercury (Hg). Isolates bacteria Hh.5, Hpr.6 and Hk.1 showed a high clear zone for plumbum metal (Pb), while in chromium metal (Cr) media there are an Hb.1, Hh.5 and Hpr.6 isolate forms a high clear zone. Based on morphological observations, there are four bacteria isolates classified as Gram-negative, and one isolate as Gram-positive. These results are preliminary studies to find bacteria that are prospectively used in the rehabilitation of heavy metal contaminated soils.

References

1. Susilawati, Mustoyo, Budhisurya, E., Anggono, R. C. W., & Simanjuntak, B. H. 2013. Analisis Kesuburan Tanah Dengan Indikator Mikroorganisme Tanah Pada Berbagai Sistem Penggunaan Lahan Di Plateau Dieng. J. Agric. 25(1), 64–72.
2. Cohen, A.C., Bottini, R., Piccoli, P.N., 2008. Azospirillum brasilense Sp. 245 Produces ABA in Chemically-defined Culture Medium and Increases ABA Content in Arabidopsis Plants. 54: 97–103. DOI 10.1007/s10725-007-9232-9
3. Khairani, Aini, F., Riany, H. 2019. Karakterisasi dan Identifikasi Bakteri Rizosfer Tanaman Sawit Jambi. Al Kauniyah: J. Biol. 12(2), 198–206. DOI 10.15408/kauniyah.v12i2.11723.
4. Gupta, S., & Pandey, S. (2019). ACC Deaminase Producing Bacteria With Multifarious Plant Growth Promoting Traits Alleviates Salinity Stress in French Bean (Phaseolus vulgaris) Plants. Front. Microbiol. 10: 1–17. DOI 10.3389/fmicb.2019.01506.
5. Holguin, G., Patten, C.L., Glick, B. R. 1999. Genetics and Molecular Biology of Azospirillum. Biol. Fertil. Soils. 29: 10–23. DOI 10/1007/s003740050519.
6. Kiba, T., Kudo, T., Kojima, M., & Sakakibara, H. 2011. Hormonal Control of Nitrogen Acquisition : roles of auxin , abscisic acid , and cytokinin. J. of Exp. Bot., 62(4), 1399–1409. DOI 10.1093/jxb/erq410.
7. Kazan, K., & Manners, J. M. 2009. Linking Development to Defense: Auxin in Plant – Pathogen Interactions. Trends Plant Sci. 14(7), 373–382. DOI 10.1016/j.tplants.2009.04.005.
8. Maya, K. C. B., Gauchan, D.P, Khanal, S.N, & Chimouriya, S. 2021. Biocatalysis and Agricultural Biotechnology Amelioration of Growth Attributes of Bambusa nutans subsp. cupulata Stapleton by Indole-3-acetic acid Extracted from Newly Isolated Bacillus mesonae MN511751 from Rhizosphere of Bambusa tulda Roxburgh. 31: 1-8. DOI 10.1016/j.bcab.2021.101920.
9. Emamverdia A. dan Y. Ding. 2018. Phytoremediation potential of bamboo plant in China. Ecology, Environment and Conservation 24(1): 530-539.
10. Liao P, S. Yuan, M. Tong, H. Long, J. Zuo dan W. Zhang. 2013. Bamboo Juice-Enhanced Desorption of Heavy Metals From Soil. J. Hazard. Toxic. Radioact. Waste 17: 45-51.
11. Irfanti, D. Y., Marsuni, Y., & Liestiany, E. 2021. Uji Antagonis Bacillus sp. dan Pseudomonas berfluorescens dari Rhizosfer Bambu , Rumput Gajah dan Putri Malu dalam Menekan Bakteri Ralstonia solanacearum. Proteksi Tanaman Tropika. 4(01), 292–298.
12. Al Banna, M.Z. & Arifuddin, W. 2021. Potensi Bakteri Asal Bambu dalam Memproduksi The Potential of Bacteria from Bamboo in Producing Indole Acetic Acid ( IAA ). Agrosainstek. 5(1), 72–80. DOI 10.33019/agrosainstek.v5i1.233
13. Susanti, W. I., Widyastuti, R., Wiyono, S. 2015. Peranan Tanah Rhizosfer Bambu sebagai Bahan untuk Menekan Perkembangan Patogen Phytophthora palmivora dan Meningkatkan Pertumbuhan Bibit Pepaya. J. Tanah dan Iklim, 39(2): 65–74.
14. Apriliya, I., Prasetyo, D., Selvany, R., Isolasi Bakteri Rhizosfer Resisten Pestisida dan Herbisida pada Berbagai Jenis Tutupan Lahan. 2021. Agrotekma: Agroteknologi dan Ilmu Pertanian. 5(1), 64–71. DOI 10.31289/agr.v5i1.4466
15. Abdu, N., Abdullahi, A. A., & Abdulkadir, A. 2016. Heavy Metals and Soil Microbes. Environ. Chem Lett. DOI 10.1007/s10311-016-0587-x
16. Morais, S., Costa F.G., Pereira, M.L., 2012. Heavy Metals and Human Health, in Enviromental Health-Emerging Issues and Practice. Oosthuizen J ed, pp.227-246, InTech.
17. Bachtiar, S.C., Tjahjaningsih, W., Sianita, N. 2012. Pengaruh Ekstrak Alga Cokelat (Sargassum sp.) terhadap Pertumbuhan Bakteri Escherichia coli. J. of Marine and Coastal Science. 1(1): 53-60.
18. Hussain, T., Roohi, A., Munir, S., Ahmed, I., Khan, J., Edel-hermann, V., Kim, K. Y., Anees, M. 2013. Biochemical Characterization and Identification of Bacterial Strains Isolated from Drinking Water Sources of Kohat , Pakistan. Afr. J. Microbiol. Res. Academic Journal. DOI 10.5897/AJMR12.2204
19. Singh M., G. Seneviratne, H.M.S.P Madawala dan M. Vithanage. 2017. Role of Rhizospheric Microbes in Heavy Metal Uptake by Plants. Agro-Enviromental Sustainability, DOI 10.1007/978-3-319-49727-3_8: 147-163.
20. Irawati W, Patricia, Y. Soraya dan A.H Baskoro. 2012. A Study on Mercury Resistant Bacteria Isolated From a Gold Mine on Pongkor Village, Bogor, Indonesia. Hayati Journal of Biosciences 19(4): 197-200.
21. Zhu H., Y. Teng, X. Wang, L. Zhao, W. Ren, Y. Luo dan P. Christie. 2021. Changes in clover rhizosphere microbial community and dazotrophs in mercury-contaminated soil. Science of the Total Environment 767: 1-10.
22. Liu Y.R, J.J Wang, Y.M. Zheng, L.M Zhang dan JZ He. 2014. Patterns of bacterial diversity along a long-term mercury-contaminated gradient in the paddy soils. Soil microbiology. DOI 10.1007/s00248-014-0430-5: 1-9.
23. Dobrescu A.L, A. Ebenberger, J. Harlfinger, U. Griebler, I. Klerings, B. Nubbaumer-Streit, A. Chapman, L. Affengruber dan G. Gartlehner. 2022. Effectiveness of interventions for the remediation of lead-contaminated soil to prevent or reduce lead exposure- a systematic review. Science of the Total Environment 806: 1-9.
24. Mitra A, S. Chatterjee, S. Kataki, R.P. Rastogi, D.K. Gupta. 2021. Bacterial tolerance strategies against lead toxicity and their relevance in bioremediation application. Enviromental Science and Pollution Research 28: 14271-14284.
25. Niu X, S. Wang, J Zhou, D. Di, P. Sun dan D. Huang. 2021. Inoculation With Indigenous Rhizosphere Microbes Enhance Aboveground Accumulation of Lead in Salix integra Thunb. by Improving Transport Coefficients. Frontiers in Microbiology 12(686812): 1-14.
26. Kamaruzzaman M.A, S.R.S Abdullah, H.A Hasan, M. Hasan, M.Idris dan N.I Ismail. 2019. Potential of hexavalent chromium-resistant rhizosphere bacteria in promoting plant growth and hexavalent chromium reduction. Journal of Environmental Biology 40: 427-433.
27. Thatoi H, S. Das, J. Mishra, B.P Rath, N. Das. 2014. Bacterial chromate reductase, a potential enzyme for bioremediation of hexalent chromium: a review. Journal of Environmental Management 146: 383-339
28. Sanjaya W.T.A, N.S. Khoirunnisa, S. Ismiani, F. Hazra, D.A. Santosa. 2021. Isolation and characterization of mercury-resistant microbes from gold mine area in Mount Pongkor, Bogor District, Indonesia. Biodiversitas 22(7): 2656-2666.
29. Chasanah U, Y. Nuraini dan E. Handayanto. 2018. The Potential of Mercury-Resistant Bacteria Isolated from Small-Scale Gold Mine Tailings for Accumulation of Mercury 19(2): 236-245.
Published
2022-08-10
How to Cite
Arifuddin, W. (2022). Exploration of Heavy Metal Tolerant Bacteria From Rhizosphere Soil of Tana Toraja’s Bamboo. JURNAL INOVASI PENDIDIKAN DAN SAINS, 3(2), 61-67. https://doi.org/10.51673/jips.v3i2.1051
Section
Artikel